CSCI5070 Advanced Topics in Social Computing

Irwin King

The Chinese University of Hong Kong

king@cse.cuhk.edu.hk

©2012 All Rights Reserved.

Information and more Information!

Information Overload

amazon.com	Hello. <u>Sign in</u> to	get personalized	FREE 2-Day Shipping: See details					
	Your Amazon.	om 🚺 Today	y's Deals Gi	fts & Wish L	ists Gift Cards	Your Digital Iter	ns Your Acco	ount Help
Shop All Departments 🛛 💟	Search Bool	s	•			🧿 📜 Car	t Wisł	ı List 💌
Books	Advanced Search	Browse Subjects	New Releases	Bestsellers	The New York Times® Bestsellers	Libros en español	Bargain Books	Textbooks

The Chinese University of Hong Kong, CSCI5070 Advanced Topics in Social Computing, Irwin King

A P + H

Today's Recommendations For You

Here's a daily sample of items recommended for you. Click here to see all recommendations.

Invincible v ~ Michael Jackson

In Search of Sunrise, Vol. 7: Asia v ~ DJ Tiesto 15.99

Fallen ♥ ~ Evanescence

AMAR ES COMBATIR Amar Es Combatir ♥ ~ Maná

Page 1 of 25

YAHOO! MOVIES

My Movies: gabe ma Edit Profile

Recommendations For You

Movies in Theaters: 94089

Showtimes & Tickets | Add to My Lists Yahoo! Users: B- 4794 ratings The Critics: B 14 reviews

Burn After Reading (R)

🔞 Don't Recommend Again 😳 Seen It? Rate It!

Fight Club (R) Showtimes & Tickets | Add to My Lists

Yahoo! Users: B+ 52392 ratings The Critics: B 12 reviews

🔞 Don't Recommend Again 🕥 Seen It? Rate It!

Pride and Glory (R) Showtimes & Tickets | Add to My Lists

Receive Recommendations by Email

Yahoo! Users: A- 59 ratings The Critics: C+ 6 reviews

🔞 Don't Recommend Again 🔕 Seen It? Rate It!

The Critics: C 12 reviews

🔞 Don't Recommend Again 🔕 Seen It? Rate It!

The Duchess (PG-13) Showtimes & Tickets | Add to My Lists

Yahoo! Users: B+ 953 ratings B- 10 reviews The Critics:

🔞 Don't Recommend Again 🔝 Seen It? Rate It!

See All Recommendations

The Chinese University of Hong Kong, CSCI5070 Advanced Topics in Social Computing, Irwin King

A P P P

iLike..

Songs from friends and similar people	
▶ Play All 🛃 Buy all 🖸	
Victims by The Oppressed New! Traditional Byrd69	
Skinhead Girl by The Oppressed New! Traditional Byrd69	
King Of The Jungle by Last Resort New! Traditional Byrd69	
Violence In Our Minds by Last Resort New! Traditional Byrd69	
Violence by The Templars New! Traditional Byrd69	
View all 📋 invite more friends	

5-scale Ratings

	Search for i	items to rate Music Enrique	<u>60!</u>
	Search resu	ults for <mark>Enrique</mark> in Music:	
1.		Escape Saved ~ Enrique Iglesias > Your tags: I Own It Add (What's this?) I Own It	
2.	NRIQUE	Enrique ~ Enrique Iglesias Saved Your tags: Add (What's this?)	
з.	7	Seven Saved ~ Enrique Iglesias I文文文文文 Your tags: I Own It Add (What's this?) I Own It	

5-scale Ratings

Sign In

On The Menu

- Introduction
- Basic Techniques
 - Collaborative filtering
 - Matrix factorization
- Different Models
 - Social graph
 - Social ensemble
 - Social distrust
 - Website recommendation

Basic Approaches

- Content-based Filtering
 - Recommend items based on key-words
 - More appropriate for information retrieval
- Collaborative Filtering (CF)
 - Look at users with similar rating styles
 - Look at similar items for each item

Underling assumption: personal tastes are correlated-- Active users will prefer those items which the similar users prefer!

Framework

•The tasks

- Find the unknown rating!
- Which item(s) should be recommended?

Collaborative Filtering

- Memory-based (Neighborhood-based)
 - User-based
 - Item-based
- Model-based
 - Clustering Methods
 - Bayesian Methods
 - Matrix Factorization
 - etc.

User-User Similarity

ltems

Items

Users

Items

Items

Items

uı **U**2 **U**3 U4 U5 U6

- Predict the ratings of active users based on the ratings of similar users found in the user-item matrix
 - Pearson correlation coefficient

$$w(a,i) = \frac{\sum_{j} (r_{aj} - \bar{r}_a)(r_{ij} - \bar{r}_i)}{\sqrt{\sum_{j} (r_{aj} - \bar{r}_a)^2 \sum_{j} (r_{ij} - \bar{r}_i)^2}} \quad j \in I(a) \cap I(i)$$

• Cosine measure

$$c(a,i) = \frac{r_a \cdot r_i}{||r_a||_2 * ||r_i||_2} \quad \stackrel{\text{ui}}{\underset{\text{ua}}{}} \quad \stackrel{\text{l}}{\underbrace{3}} \quad \stackrel{\text{d}}{\underbrace{4}} \quad \stackrel{\text{2}}{\underbrace{5}} \quad \stackrel{\text{3}}{\underbrace{3}} \quad \stackrel{\text{d}}{\underbrace{4}} \quad \stackrel{\text{2}}{\underbrace{5}} \quad \stackrel{\text{3}}{\underbrace{4}} \quad \stackrel{\text{d}}{\underbrace{5}} \quad \stackrel{\text{d}$$

Nearest Neighbor Approaches

[Sarwar, 00a]

Figure 1: Three main parts of a Recommender System.

- Identify highly similar users to the active one
 - All with a measure greater than a threshold
 - Best K ones

• Prediction
$$r_{aj} = \bar{r}_a + \frac{\sum_i w(a,i)(r_{ij} - \bar{r}_i)}{\sum_i w(a,i)}$$

Collaborative Filtering

- Memory-based Method (Simple)
 - User-based Method [Xue et al., SIGIR '05]
 - Item-based [Deshpande et al., TOIS '04]
- Model-based (Robust)
 - Clustering Methods [Hkors et al, CIMCA '99]
 - Bayesian Methods [Chien et al., IWAIS '99]
 - Aspect Method [Hofmann, SIFIR '03]
 - Matrix Factorization [Sarwar et al., WWW '01]

Collaborative Filtering

- Memory-based (Neighborhood-based)
 - User-based
 - Item-based
- Model-based
 - Clustering Methods
 - Bayesian Methods
 - Matrix Factorization
 - etc.

Item-Item Similarity

- Search for similarities among items
- Item-Item similarity is more stable than user-user similarity

Correlation-based Method

[Sarwar, 2001]

- Same as in user-user similarity but on item vectors
- Pearson correlation coefficient
 - Look for users who rated both items

$$s_{ij} = \frac{\sum_{u} (r_{uj} - \bar{r}_j)(r_{ui} - \bar{r}_i)}{\sqrt{\sum_{u} (r_{uj} - \bar{r}_j)^2 \sum_{u} (r_{ui} - \bar{r}_i)^2}}$$

• u: users rated both items

$$u_{u_1} = \frac{1}{1 + 1} + \frac{1$$

Correlation-based Method

[Sarwar, 2001]

Calculate item similarity, then determine its k-most similar items

• Predict rating for a given user-item pair as a weighted sum over similar items that he rated $r_{ai} = \frac{\sum_{j} s_{ij} r_{aj}}{\sum_{j} s_{ij}}$

Collaborative Filtering

- Memory-based (Neighborhood-based)
 - User-based
 - Item-based
- Model-based
 - Clustering Methods
 - Bayesian Methods
 - Matrix Factorization
 - etc...

	i_1	i_2	i ₃	i4	i ₅	i ₆	i_7	i ₈
u_1	5	2		3		4		
u_2	4	3			5			
u_3	4		2				2	4
u_4								
u_5	5	1	2		4	3		
u_6	4	3		2	4		3	5

	i_1	i_2	i ₃	i4	i _s	i ₆	i,	i ₈
u_1	5	2	2.5	3	4.8	4	2.2	4.8
u_2	4	3	2.4	2.9	5	4.1	2.6	4.7
<i>u</i> ₃	4	1.7	2	3.2	3.9	3.0	2	4
u4	4.8	2.1	2.7	2.6	4.7	3.8	2.4	4.9
u_5	5	1	2	3.4	4	3	1.5	4.6
u_6	4	3	2.9	2	4	3.4	3	5

$$V = \begin{bmatrix} 1.00 & -0.05 & -0.24 & 0.26 & 1.28 & 0.54 & -0.31 & 0.52 \\ 0.19 & -0.86 & -0.72 & 0.05 & 0.68 & 0.02 & -0.61 & 0.70 \\ 0.49 & 0.09 & -0.05 & -0.62 & 0.12 & 0.08 & 0.02 & 1.60 \\ -0.40 & 0.70 & 0.27 & -0.27 & 0.99 & 0.44 & 0.39 & 0.74 \\ 1.49 & -1.00 & 0.06 & 0.05 & 0.23 & 0.01 & -0.36 & 0.80 \end{bmatrix}$$

$$U = \begin{bmatrix} 1.55 \ 1.22 & 0.37 & 0.81 & 0.62 & -0.01 \\ 0.36 & 0.91 & 1.21 & 0.39 & 1.10 & 0.25 \\ 0.59 & 0.20 & 0.14 & 0.83 & 0.27 & 1.51 \\ 0.39 & 1.33 & -0.43 & 0.70 & -0.90 & 0.68 \\ 1.05 & 0.11 & 0.17 & 1.18 & 1.81 & 0.40 \end{bmatrix}$$

- Matrix Factorization in Collaborative Filtering
 - To fit the product of two (low rank) matrices to the observed rating matrix.
 - To find two latent user and item feature matrices.
 - To use the fitted matrix to predict the unobserved ratings.

$$Y \approx UV = \begin{pmatrix} u_{11} & \cdots & u_{1k} \\ \vdots & \ddots & \vdots \\ u_{m1} & \cdots & u_{mk} \end{pmatrix} \begin{pmatrix} v_{11} & \cdots & v_{1n} \\ \vdots & \ddots & \vdots \\ v_{k1} & \cdots & v_{kn} \end{pmatrix}$$

User-specific latent
feature vector
ltem-specific latent
feature column vector

- Optimization Problem
 - Given a $m \times n$ rating matrix R, to find two matrices $U \in \mathbb{R}^{l \times m}$ and $V \in \mathbb{R}^{l \times n}$

$$R \approx U^T V,$$

where $l < \min(m, n)$, is the number of factors

- SVD-like Algorithm
- Regularized Matrix Factorization (RMF)
- Probabilistic Matrix Factorization (PMF)
- Non-negative Matrix Factorization (NMF)

SVD-like Algorithm

Minimizing

$$\frac{1}{2}||R - U^T V||_F^2,$$

For collaborative filtering

$$\min_{U,V} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_i^T V_j)^2$$

where I_{ij} is the indicator function that is equal to 1 if user u_i rated item v_j and equal to 0 otherwise.

 Minimize the loss based on the observed ratings with regularization terms to avoid over-fitting problem

$$\min_{U,V} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_i^T V_j)^2 + \underbrace{\frac{\lambda_1}{2} ||U||_F^2 + \frac{\lambda_2}{2} ||V||_F^2}_{\text{Regularization terms}}$$

where

• The proplem can be solved by simple gradient descent algorithm.

- Algorithm for RMF
 - Not convex & local optimal
 - Gradient-decent algorithm
 - Gradient computation with randomly initialized U and V

$$\frac{\partial L}{\partial u_{il}} = \lambda u_{il} - \sum_{j \mid (i,j) \in S} (y_{ij} - \widehat{y_{ij}}) v_{jl}$$
$$\frac{\partial L}{\partial v_{il}} = \lambda v_{il} - \sum_{j \mid (i,j) \in S} (y_{ij} - \widehat{y_{ij}}) u_{jl}$$

• Update *U* and *V* alternatively

$$u_{il}^{(t+1)} = u_{il}^{(t)} - \tau \frac{\partial L}{\partial u_{il}^{(t)}}$$
$$v_{jl}^{(t+1)} = v_{jl}^{(t)} - \tau \frac{\partial L}{\partial v_{jl}^{(t)}}$$

au is the step size of gradient decent.

- PMF
 - Define a conditional distribution over the observed ratings as:

- PMF
 - Assume zero-mean spherical Gaussian priors on user and item feature:

- PMF
 - Bayesian inference

RMF and **PMF**

PMF is the probabilistic interpretation of RMF

PMF and RMF have the same optimization objective function

Non-negative Matrix Factorization

- NMF
 - Non-negative constraints on all entries of matrices U and V

Non-negative Matrix Factorization

- NMF
 - Given an observed matrix Y, to find two non-negative matrices U and V
 - Two types of loss functions
 - Squared error function

$$\sum_{ij} \left(R_{ij} - U_i^T V_j \right)^2$$

• Divergence

$$D(R||U^T V) = \sum_{ij} \left(R_{ij} \log \frac{R_{ij}}{U_i^T V_j} - R_{ij} + U_i^T V_j \right)$$

Solving by multiplicative updating rules

Non-negative Matrix Factorization

- Multiplicative updating rules
 - For divergence objective function

$$u_{il} \leftarrow u_{il} \frac{\sum_{j} v_{jl} y_{ij} / (\widehat{y}_{ij})}{\sum_{a} v_{al}}$$
$$v_{il} \leftarrow v_{il} \frac{\sum_{j} u_{jl} y_{ij} / (\widehat{y}_{ij})}{\sum_{a} u_{al}}$$

